111 research outputs found

    Basic mechanisms of rTMS: Implications in Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Basic and clinical research suggests a potential role for repetitive transcranial magnetic stimulation (rTMS) in the treatment of Parkinson's disease. However, compared to the growing number of clinical studies on its putative therapeutic properties, the studies on the basic mechanisms of rTMS are surprisingly scarce.</p> <p>Results</p> <p>Animal studies have broadened our understanding of how rTMS affects brain circuits and the causal chain in brain-behavior relationships. The observed changes are thought to be to neurotransmitter release, transsynaptic efficiency, signaling pathways and gene transcription. Furthermore, recent studies suggest that rTMS induces neurogenesis, neuronal viability and secretion of neuroprotective molecules.</p> <p>Conclusion</p> <p>The mechanisms underlying the disease-modifying effects of these and related rTMS in animals are the principle subject of the current review. The possible applications for treatment of Parkinson's disease are discussed.</p

    Single neuron electroporation in manipulating and measuring the central nervous system

    Get PDF
    The development and application of single neuron electroporation largely advanced the use of traditional genetics in investigations of the central nervous system. This quick and accurate manipulation of the brain at individual neuron level allowed the gain and loss of functional analyses of different genes and/or proteins. This manuscript reviewed the development of the technique and discussed some technical aspects in practical manipulations. Then the manuscript summarized the potential applications with this technique. Last but not least, the technique showed prospective future when combined with other modern methods in neuroscience research

    Dopaminergic reward system: a short integrative review

    Get PDF
    Memory is an essential element to adaptive behavior since it allows consolidation of past experience guiding the subject to consider them in future experiences. Among the endogenous molecules that participate in the consolidation of memory, including the drug-seeking reward, considered as a form of learning, is dopamine. This neurotransmitter modulates the activity of specific brain nucleus such as nuclei accumbens, putamen, ventral tegmental area (VTA), among others and synchronizes the activity of these nuclei to establish the neurobiological mechanism to set the hedonic element of learning. We review the experimental evidence that highlights the activity of different brain nuclei modulating the mechanisms whereby dopamine biases memory towards events that are of motivational significance

    Administration of URB597, Oleoylethanolamide or Palmitoylethanolamide Increases Waking and Dopamine in Rats

    Get PDF
    -acylethanolamines or acylethanolamides. The hydrolysis of OEA and PEA is catalyzed by the fatty acid amide hydrolase (FAAH). A number of FAAH inhibitors that increase the levels of OEA and PEA in the brain have been developed, including URB597. In the present report, we examined whether URB597, OEA or PEA injected into wake-related brain areas, such as lateral hypothalamus (LH) or dorsal raphe nuclei (DRN) would promote wakefulness (W) in rats.Male Wistar rats (250–300 g) were implanted for sleep studies with electrodes to record the electroencephalogram and electromyogram as well as a cannulae aimed either into LH or into DRN. Sleep stages were scored to determine W, slow wave sleep (SWS) and rapid eye movement sleep (REMS). Power spectra bands underly neurophysiological mechanisms of the sleep-wake cycle and provide information about quality rather than quantity of sleep, thus fast Fourier transformation analysis was collected after the pharmacological trials for alpha (for W; α = 8–12 Hz), delta (for SWS; δ = 0.5–4.0 Hz) and theta (for REMS; θ = 6.0–12.0 Hz). Finally, microdialysis samples were collected from a cannula placed into the nucleus accumbens (AcbC) and the levels of dopamine (DA) were determined by HPLC means after the injection of URB597, OEA or PEA. We found that microinjection of compounds (10, 20, 30 µg/1 µL; each) into LH or DRN during the lights-on period increased W and decreased SWS as well as REMS and enhanced DA extracellular levels.URB597, OEA or PEA promoted waking and enhanced DA if injected into LH or DRN. The wake-promoting effects of these compounds could be linked with the enhancement in levels of DA and indirectly mediated by anandamide

    Neural Mechanisms of Exercise: Effects on Gut Miccrobiota and Depression

    Get PDF
    Microbiota is a set of microorganisms resident in gut ecosystem that reacts to psychological stressful stimuli, and is involved in depressed or anxious status in both animals and human being. Interestingly, a series of studies have shown the effects of physical exercise on gut microbiota dynamics, suggesting that gut microbiota regulation might act as one mediator for the effects of exercise on the brain. Recent studies found that gut microbiota dynamics are also regulated by metabolism changes, such as through physical exercise or diet change. Interestingly, physical exercise modulates different population of gut bacteria in compared to food restriction or rich diet, and alleviates gut syndromes to toxin intake. Gut microbiota could as well contribute to the beneficial effects of exercise on cognition and emotion, either directly through serotonin signaling or indirectly by modulating metabolism and exercise performance

    Neural Mechanisms of Exercise: Anti-Depression, Neurogenesis, and Serotonin Signaling

    Get PDF
    Depression is associated with decreased serotonin metabolism and functioning in the central nervous system, evidenced by both animal models of depression and clinical patient studies. Depression is also accompanied by decreased hippocampal neurogenesis in diverse animal models. Neurogenesis is mainly defined in dentate gyrus of hippocampus as well as subventricular zone. Moreover, hypothalamus, amygdala, olfactory tubercle, and piriform cortex are reported with evidences of adult neurogenesis. Physical exercise is found to modulate adult neurogenesis significantly, and results in mood improvement. The cellular mechanism such as adult neurogenesis upregulation was considered as one major mood regulator following exercise. The recent advances in molecular mechanisms underlying exercise-regulated neurogenesis have widen our understanding in brain plasticity in physiological and pathological conditions, and therefore better management of different psychiatric disorders

    Transcranial Focal Electrical Stimulation Modifies Biogenic Amines’ Alterations Induced by 6-Hydroxydopamine in Rat Brain

    Get PDF
    Transcranial focal stimulation (TFS) is a non-invasive neuromodulation strategy with neuroprotective effects. On the other hand, 6-hidroxidopamine (6-OHDA) induces neurodegeneration of the nigrostriatal system producing modifications in the dopaminergic, serotoninergic, and histaminergic systems. The present study was conducted to test whether repetitive application of TFS avoids the biogenic amines’ changes induced by the intrastriatal injection of 6-OHDA. Experiments were designed to determine the tissue content of dopamine, serotonin, and histamine in the brain of animals injected with 6-OHDA and then receiving daily TFS for 21 days. Tissue content of biogenic amines was evaluated in the cerebral cortex, hippocampus, amygdala, and striatum, ipsi- and contralateral to the side of 6-OHDA injection. Results obtained were compared to animals with 6-OHDA, TFS alone, and a Sham group. The present study revealed that TFS did not avoid the changes in the tissue content of dopamine in striatum. However, TFS was able to avoid several of the changes induced by 6-OHDA in the tissue content of dopamine, serotonin, and histamine in the different brain areas evaluated. Interestingly, TFS alone did not induce significant changes in the different brain areas evaluated. The present study showed that repetitive TFS avoids the biogenic amines’ changes induced by 6-OHDA. TFS can represent a new therapeutic strategy to avoid the neurotoxicity induced by 6-OHDA

    Activity-dependent neurorehabilitation beyond physical trainings: "mental exercise" through mirror neuron activation

    Get PDF
    The activity dependent brain repair mechanism has been widely adopted in many types of neurorehabilitation. The activity leads to target specific and non-specific beneficial effects in different brain regions, such as the releasing of neurotrophic factors, modulation of the cytokines and generation of new neurons in adult hood. However physical exercise program clinically are limited to some of the patients with preserved motor functions; while many patients suffered from paralysis cannot make such efforts. Here the authors proposed the employment of mirror neurons system in promoting brain rehabilitation by "observation based stimulation". Mirror neuron system has been considered as an important basis for action understanding and learning by mimicking others. During the action observation, mirror neuron system mediated the direct activation of the same group of motor neurons that are responsible for the observed action. The effect is clear, direct, specific and evolutionarily conserved. Moreover, recent evidences hinted for the beneficial effects on stroke patients after mirror neuron system activation therapy. Finally some music-relevant therapies were proposed to be related with mirror neuron system

    The potential role of the novel hypothalamic neuropeptides nesfatin-1, phoenixin, spexin and kisspeptin in the pathogenesis of anxiety and anorexia nervosa

    Get PDF
    Due to the dynamic development of molecular neurobiology and bioinformatic methods several novel brain neuropeptides have been identified and characterized in recent years. Contemporary techniques of selective molecular detection e.g. in situ Real-Time PCR, microdiffusion and some bioinformatics strategies that base on searching for single structural features common to diverse neuropeptides such as hidden Markov model (HMM) have been successfully introduced. A convincing majority of neuropeptides have unique properties as well as a broad spectrum of physiological activity in numerous neuronal pathways including the hypothalamus and limbic system. The newly discovered but uncharacterized regulatory factors nesfatin-1, phoenixin, spexin and kisspeptin have the potential to be unique modulators of stress responses and eating behaviour. Accumulating basic studies revelaed an intriguing role of these neuropeptides in the brain pathways involved in the pathogenesis of anxiety behaviour. Nesfatin-1, phoenixin, spexin and kisspeptin may also distinctly affect the energy homeostasis and modulate food intake not only at the level of hypothalamic centres. Moreover, in patients suffered from anxiety and anorexia nervosa a significant, sex-related changes in the plasma neuropeptide levels occurred. It should be therefore taken into account that the targeted pharmacomodulation of central peptidergic signaling may be potentially helpful in the future treatment of certain neuropsychiatric and metabolic disorders. This article reviews recent evidence dealing with the hypothetical role of these new factors in the anxiety-related circuits and pathophysiology of anorexia nervosa

    Transgenerational inheritance of paternal neurobehavioral phenotypes: stress, addiction, ageing and metabolism

    Get PDF
    Epigenetic modulation is found to get involved in multiple neurobehavioral processes. It is believed that different types of environmental stimuli could alter the epigenome of the whole brain or related neural circuits, subsequently contributing to the long-lasting neural plasticity of certain behavioral phenotypes. While the maternal influence on the health of offsprings has been long recognized, recent findings highlight an alternative way for neurobehavioral phenotypes to be passed on to the next generation, i.e., through the male germ line. In this review, we focus specifically on the transgenerational modulation induced by environmental stress, drugs of abuse, and other physical or mental changes (e.g., ageing, metabolism, fear) in fathers, and recapitulate the underlying mechanisms potentially mediating the alterations in epigenome or gene expression of offsprings. Together, these findings suggest that the inheritance of phenotypic traits through male germ-line epigenome may represent the unique manner of adaptation during evolution. Hence, more attention should be paid to the paternal health, given its equivalently important role in affecting neurobehaviors of descendants
    corecore